

Stereoisomeric 2,3-dihydroxybutanoic acids

Figure 7.9

Representation of (2R, 3R)-dihydroxybutanoic acid

Figure 7.10

The three stereoisomeric 2,3-butanediols shown in conformations used to generate Fischer projections

Figure 7.11

Meso-2, 3-butanediol

Figure 7.12

Stereogenic centers in cholic acid

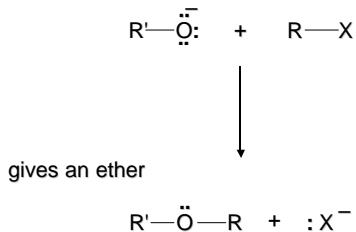
Figure 7.13

Chapter 8 - Nucleophilic Substitution

Chapter 8

- Definitions - nucleophile, electrophile, leaving group
- Functional Group Transformations using Nucleophiles
- Examples of Nucleophiles
- Properties of Leaving Groups
- The S_N2 reaction revisited

Nucleophilic Substitution


nucleophile is a Lewis base (electron-pair donor)

often negatively charged and used as
 Na^+ or K^+ salt

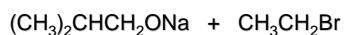
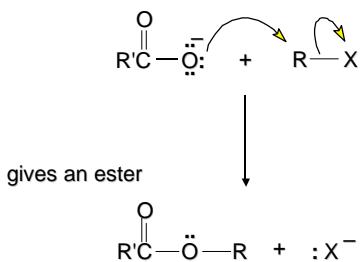

substrate is usually an alkyl halide

Table 8.1 Examples of Nucleophilic Substitution

Alkoxide ion as the nucleophile

Example


↓ Isobutyl alcohol

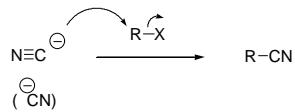
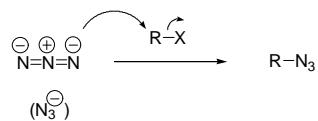
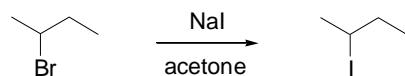

Ethyl isobutyl ether (66%)

Table 8.1 Examples of Nucleophilic Substitution


Carboxylate ion as the nucleophile


Cyanide as nucleophile

Azide as nucleophile

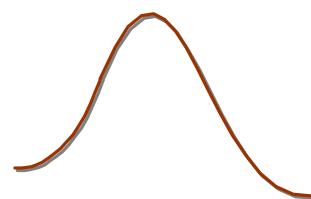
Halides as Nucleophiles

NaI is soluble in acetone, NaCl and NaBr are not

Halides are very good leaving groups:

I^- better than Br^- which is better than Cl^-

F^- is not used as a leaving group


The S_N2 mechanism of Nucleophilic Substitution

Example:

$$\text{rate} = k[CH_3Br][HO^-]$$

inference: rate-determining step is bimolecular

Orbital description of nucleophilic substitution by the S_N2 mechanism

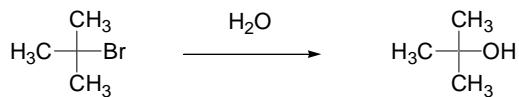
Figure 8.2

Steric hindrance effects on rates of bimolecular nucleophilic substitution (S_N2) reactions

Figure 8.3

Table 8.3 - Relative rates of reaction of different primary alkyl bromides

ethyl bromide 1.0	propyl bromide 0.8	isobutyl bromide 0.036	neopentyl bromide 0.00002


Table 8.4 - discussion of relative nucleophilicity

Solvation of a chloride by ion-dipole

Figure 8.4

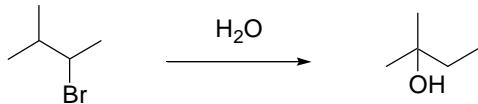
Choice of solvent is important for S_N2 - polar aprotic used often

The S_N1 reaction revisited

Tertiary system - favours S_N1 - carbocation possible

Carbocation will be the electrophile

Water will be the nucleophile


Energy diagram for nucleophilic substitution by the S_N1 mechanism
Figure 8.6

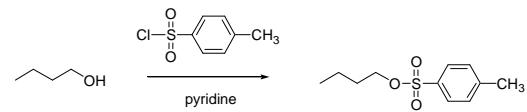
Relative rates of reaction by the S_N1 pathway

Table 8.5

Formation of a racemic product - Figure 8.7

Carbocation rearrangements also possible

Look for change in the product skeleton.


Rearrangement (in this case hydride shift) to generate a more stable carbocation.

Choice of solvent important

More polar solvents (higher dielectric constant) will help stabilize the ionic intermediates.

Substitution vs. Elimination - Figure 8.11

Sulfonate esters as leaving groups

